

Programming Guide

Getting Started with the Kinect for Windows SDK Beta from

Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

About this Guide The Kinect™ for Windows
®

 Software Development Kit (SDK) Beta from Microsoft

Research is a starter kit for applications developers. The kit makes it easier for the academic research

and enthusiast communities to create rich experiences by using Kinect for Xbox 360
®

 sensor technology

on a PC that is running the Windows 7 operating system.

This SDK Beta is provided by Microsoft Research to enable researchers and programmer enthusiasts to

explore the development of natural user interfaces. This SDK Beta includes an application programming

interface (API) and sample code.

Important The Kinect for Windows SDK Beta from Microsoft Research is licensed only for

noncommercial use. By installing, copying, or otherwise using the SDK Beta, you agree to be bound by

the terms of its license. Read the license.

See Also FAQ for Kinect for Windows SDK Beta

In this guide

PART 1—Introduction to this SDK Beta

PART 2—The NUI API: An Overview

PART 3—The Audio API: An Overview

PART 4—Resources

http://research.microsoft.com/KinectSDK-ToU
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/faq.aspx

Programming Guide – 2

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Disclaimer: This document is provided ―as-is‖. Information and views expressed in this document, including URL and other

Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may

copy and use this document for your internal, reference purposes.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, DirectShow, Direct3D, DirectX, Kinect, MSDN, Visual Studio, Win32, Windows, Windows Media, Windows Vista,

and Xbox 360 are trademarks of the Microsoft group of companies. All other trademarks are property of their respective

owners.

Programming Guide – 3

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Contents
PART 1—Introduction to This SDK Beta ... 4
Welcome ... 4

System Requirements .. 4
Skills for Developers ... 5

Downloading and Installing the SDK Beta .. 6
Loading the Microsoft Kinect Drivers ... 6
Configuring the Development Environment ... 7

Implementing a Managed Application .. 8
Implementing a C++ Application .. 8

Experimenting with NUI and Kinect Sensors ... 9
Protecting Your Kinect Sensor While You Experiment .. 9
Experimenting with this Beta Development Kit .. 11

Understanding How Kinect Sensors Work ... 12
Beta Testing Recommended Practices ... 12

Samples in the SDK Beta .. 12
PART 2—The NUI API: An Overview ... 14
Kinect for Windows Architecture .. 14
The NUI API .. 15

NUI API Initialization .. 15
Sensor Enumeration and Access ... 16
Initialization Options .. 17

NUI Image Data Streams: An Overview ... 17
Color Image Data: Quality, Formats and Bandwidth .. 17
Depth Data ... 18
Player Segmentation Data ... 18
Retrieving Image Information .. 19

NUI Skeleton Tracking ... 20
Retrieving Skeleton Information ... 20
Active and Passive Skeletal Tracking .. 21

NUI Transformations .. 22
Depth Image Space .. 22
Skeleton Space ... 22
Sensor Array and Tilt Compensation .. 23
Floor Determination ... 23
Skeletal Mirroring.. 24

PART 3—The Audio API: An Overview .. 25
About the Kinect Microphone Array ... 25
Kinect SDK C++ Audio API .. 26

Raw Audio Capture ... 26
KinectAudio DMO ... 26

Kinect SDK Managed Audio API ... 27
How to Use Microsoft.Speech with the Kinect Microphone Array ... 27
PART 4—Resources .. 28
Tips and Troubleshooting .. 28
Terminology for Kinect and NUI ... 29
References .. 30
APPENDIX ... 31
How to Build an Application with Visual Studio Express .. 31

Programming Guide – 4

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

PART 1—Introduction to This SDK Beta

Welcome
The Kinect™ for Windows

®
 Software Development Kit (SDK) Beta from Microsoft Research is a starter kit

for applications developers. The kit makes it easier for the academic research and enthusiast

communities to create rich experiences by using Kinect sensor technology on computers that are

running Windows 7.

Kinect for Windows SDK Beta includes:

 Drivers, for using Kinect sensor devices on a computer that is running Windows 7.

 APIs and device interfaces, together with technical documentation for developers.

 Source code samples.

System Requirements

You must run applications that are built by using the Kinect for Windows SDK Beta in a native Windows

environment. You cannot run applications in a virtual machine, because the Microsoft Kinect drivers and

this SDK Beta must be installed on the computer that is running the application.

Supported Operating Systems and Architectures

 Windows 7 (x86 or x64)

Hardware Requirements

 Computer with a dual-core, 2.66-GHz or faster processor

 Windows 7–compatible graphics card that supports Microsoft
®

 DirectX
®

 9.0c capabilities

 2 GB of RAM

 Kinect for Xbox 360
®

 sensor—retail edition, which includes special USB/power cabling

Software Requirements

 Microsoft Visual Studio
®

 2010 Express or other Visual Studio 2010 edition

 Microsoft .NET Framework 4.0 (installed with Visual Studio 2010)

 For C++ SkeletalViewer samples:

 DirectX Software Development Kit, June 2010 or later version

 DirectX End-User Runtime Web Installer

 For Speech sample (x86 only):

 Microsoft Speech Platform - Server Runtime, version 10.2 (x86 edition)

 Microsoft Speech Platform - Software Development Kit, version 10.2 (x86 edition)

 Kinect for Windows Runtime Language Pack, version 0.9

(acoustic model from Microsoft Speech Platform for the Kinect for Windows SDK Beta)

http://www.microsoft.com/express/Downloads/#2010-Visual-CPP
http://msdn.microsoft.com/en-us/netframework/aa569263
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba
http://www.microsoft.com/downloads/en/details.aspx?familyid=2DA43D38-DB71-4C1B-BC6A-9B6652CD92A3&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=bb0f72cb-b86b-46d1-bf06-665895a313c7
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1b1604d3-4f66-4241-9a21-90a294a5c9a4&displaylang=en
http://go.microsoft.com/fwlink/?LinkId=220942

Programming Guide – 5

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Skills for Developers

You can use this SDK Beta for your personal programming interests. The SDK Beta is specifically for

computer scientists and scientific researchers in academia. It is also provided for technical enthusiasts

who want to creatively explore NUI possibilities with the Kinect sensor and related technologies.

Experimenting with Kinect and NUI

This SDK Beta enables exploration and experimentation with the following features:

 Skeletal tracking for the image of one or two persons who are moving within the Kinect sensor’s

field of view.

 XYZ-depth camera for accessing a standard color camera stream plus depth data to indicate the

distance of the object from the Kinect sensor.

 Audio processing for a four-element microphone array with acoustic noise and echo cancellation,

plus beam formation to identify the current sound source and integration with the

Microsoft.Speech speech recognition API.

Related concepts and programming approaches are explored in this programming guide.

Application Development

To take advantage of the experimental capabilities and features in this SDK Beta, developers should be

familiar with the following:

 Development environment and languages

 Visual Studio 2010

To work with the SDK samples and to develop your own applications with the SDK, you can use

Visual Studio C# 2010 Express, Visual Studio C++ 2010 Express, or any other version of Visual

Studio 2010. Visual Studio Express is available at no cost from the Microsoft website. If you are

new to Visual Studio, see the Visual Studio 2010 Getting Started Guide.

 C# or C++ languages

Samples are available in both C# and C++. For information about programming in these

languages, see Visual C# Developer Center and Visual C++ Developer Center.

 Application development for Windows 7

This SDK Beta takes advantage of the functions and features of the SDK for Windows 7. If you are

new to Windows development, see Beginner Developer Learning Center for Windows Development.

Note This SDK should not be used to develop prototype applications with the intent of porting those

applications to the Xbox 360 console. There are numerous architectural, performance, and behavioral

differences between Xbox 360 and Windows. These differences affect how the Kinect technology is

implemented for Windows 7. As a result, design decisions and performance characteristics are quite

often very different between the two platforms. Microsoft recommends using Xbox 360 development

kits (XDK hardware and software) to create Xbox 360 applications

http://msdn.microsoft.com/en-us/vstudio/ff431702
http://go.microsoft.com/fwlink/?linkid=95125
http://msdn.microsoft.com/en-us/visualc/default.aspx
http://msdn.microsoft.com/en-us/beginner/dd435692.aspx

Programming Guide – 6

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Downloading and Installing the SDK Beta
This section describes how to install the SDK Beta and begin experimenting with the Kinect sensor on

Windows.

You must download and install the SDK Beta on any system where you want to build or run applications

that use the Kinect sensor on Windows.

To prepare to install the Kinect for Windows SDK Beta

1. Obtain the latest updates for Windows 7 from Microsoft Update.

2. Make sure that the Kinect device is not plugged in to the USB port on your computer.

3. Remove any other drivers you might have previously installed for the Kinect device, including any

earlier versions of the Microsoft Kinect drivers or drivers from any other source. To do this:

 In Programs and Features in Control Panel, click the name of any previous driver, and then

click Uninstall.

 If the driver is not listed in Programs and Features, follow the directions that the driver

distributor provides for removing the driver.

Caution If another driver for the Kinect device is installed on your PC, the Microsoft Kinect drivers

might not install correctly and will not work correctly.

4. Make sure all required software is installed on your computer, as described earlier in ―System

Requirements.‖

5. Close Visual Studio before you install the SDK Beta.

Note To ensure proper setting of the Path MSRKINECTSDK environment variables that the SDK

Beta requires, you must exit Visual Studio before installation and then restart it after installation.

To obtain and install the Kinect for Windows SDK Beta

1. On the Kinect for Windows SDK Beta download page, click the Download option for your computer

(x86 or x64).

2. To start the SDK installation immediately, click Run.

To save the download to your computer for installation at a later time, click Save.

3. Follow the Setup wizard prompts to complete installation.

Important You must install the Kinect for Windows SDK Beta on each PC system on which you want to

run applications that you build by using this SDK Beta.

Loading the Microsoft Kinect Drivers

The Kinect sensor is a physical device that contains cameras and a microphone array. The sensor

connects to a PC by a USB cable although it is not, strictly speaking, a USB device. The Kinect sensor

uses a USB connector, but has somewhat different firmware than standard USB devices.

When you download the SDK Beta, the installation package includes the Microsoft Kinect drivers. When

the Microsoft Kinect drivers are installed on a Windows-based PC, a Kinect sensor that is plugged into

the PC’s USB port appears to applications as a multicomponent USB device.

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/

Programming Guide – 7

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

To load the Microsoft Kinect drivers

1. Plug the power supply for your Kinect sensor into an external power source.

2. Plug in the Kinect sensor to a USB port on your PC and wait for Windows to recognize the sensor’s

components.

3. All the drivers, including audio, will load seamlessly.

To verify the driver installation

1. You should see a blinking green LED on the Kinect sensor.

2. In Device Manager in Control Panel, look for the following nodes under Microsoft Kinect:

 Microsoft Kinect Audio Array Control

 Microsoft Kinect Camera

 Microsoft Kinect Device

3. Under Sound, Video and Game Controllers in Device Manager, the Kinect sensor's microphone

array should appear

 Kinect USB Audio

Important You must install the Kinect for Windows SDK Beta—which also installs the Microsoft Kinect

drivers—before you plug the Kinect device into a USB port on your computer. If you plug in the device

before installing the drivers, Microsoft Kinect will not appear in Device Manager. If you have more than

one Kinect sensor, make sure that you connect them to different USB hubs.

Configuring the Development Environment

Visual Studio Express Edition for either C++ or C# includes an integrated development environment

(IDE) in which you can code, debug, and test your applications.

This section provides notes for configuring your development environment to work with the Kinect for

Windows SDK Beta.

New to Visual Studio Express? If you are new to Visual Studio Express as a development environment,

the following information on the MSDN
®

 website will help you become familiar with these development

tools:

 For a brief look at how to configure Visual Studio Express and then build and test a new project, see

the appendix to this guide, ―How to Build an Application with Visual Studio Express.‖

 Visit the Visual C# Developer Center and Visual C++ Developer Center, where you can find many

tutorials, samples, and videos to help you get started.

General Notes

 Use Visual Studio 2010 Express or another Visual Studio 2010 edition.

 Specify an x86 (Win32) platform target.

Important Do not specify x64 or Any CPU as the platform target. This SDK Beta supports only x86

applications. The 32-bit and 64-bit installation packages for this SDK Beta include Kinect for

Windows drivers for x86 and x64 systems, respectively, but both packages include only x86 libraries.

All applications must therefore target only the x86 platform.

http://go.microsoft.com/fwlink/?linkid=95125
http://msdn.microsoft.com/en-us/visualc/default.aspx
http://www.microsoft.com/express/Downloads/#2010-Visual-CPP

Programming Guide – 8

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

 Applications that are built with this SDK Beta must run in a native Windows environment. You

cannot run applications in a virtual machine, because the Microsoft Kinect drivers and this SDK Beta

must be installed on the computer that is running the application.

Implementing a Managed Application

Follow these basic steps for implementing a managed application.

To implement a C# application

1. Reference Microsoft.Research.Kinect.dll.

This assembly is in the global assembly cache (GAC) and appears on the .NET tab of the Add

Reference dialog box. This DLL calls unmanaged functions from managed code.

2. Include using directives for the following namespaces:

For the NUI API, include:

using Microsoft.Research.Kinect.Nui

For the Audio API, include:

using Microsoft.Research.Kinect.Audio

Implementing a C++ Application

Follow these basic steps for implementing an unmanaged application.

To implement a C++ application

1. Do not compile C++ projects with w_char as a separate type.

2. To use the NUI API, include MSR_NuiApi.h.

Location: Program Files\Microsoft Research KinectSDK\inc

3. To use the Kinect Audio API, include MSRKinectAudio.h.

Location: Program Files\Microsoft Research KinectSDK\inc

4. Link to MSRKinectNUI.lib.

Location: Program Files\Microsoft Research KinectSDK\lib

5. Ensure that the Kinect SDK DLLs are on your path when you run your project.

Location: \Program Files\Microsoft Research KinectSDK

The following table describes the files to include in your projects.

In ..\Program Files (x86)\Microsoft Research KinectSDK\inc\

MSR_NuiApi.h Aggregates all NUI API headers and defines basic initialization and access

functions—NuiInitialize, NuiShutdown, MSR_NuiXxx, and INuiInstance:

 Enumerate devices

 Access multiple devices

Programming Guide – 9

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

In ..\Program Files (x86)\Microsoft Research KinectSDK\inc\

MSR_NuiImageCamera.h Defines the API for the NUI image and camera services—NuiCameraXxx

and NuiImageXxx:

 Adjust camera angle and elevation

 Open streams and read image frames

MSR_NuiProps.h Defines the APIs for the NUI properties enumerator.

MSR_NuiSkeleton.h Defines API for NUI Skeleton—NuiSkeletonXxx and NuiTransformXxx:

 Enable/disable skeleton tracking

 Get skeleton data

 Transform skeleton data for smoother rendering

MSRKinectAudio.h Defines the Audio API, including the ISoundSourceLocalizer interface that

returns the beam direction and source location.

NuiImageBuffer.h Defines a frame buffer for effects that are similar to DirectX 9 textures.

Experimenting with NUI and Kinect Sensors
This SDK Beta is intended for an audience of experienced developers who want to experiment with

Kinect sensors as input and imaging devices on Windows-based PCs. Many early-adopters are eager to

use Kinect sensors to explore possibilities for natural user interfaces (NUI). The SDK is not intended for

use in consumer environments and is not licensed for production use. Use of this SDK is expected to be

in a laboratory or test-bench setting or in a classroom.

This guide provides the following brief notes to get you started:

 Experimenting with this Beta development kit.

 Protecting your Kinect sensor while you experiment.

 Scenarios and ranges for the Kinect sensor array.

Feedback Request The Microsoft teams that collaborated to deliver this early SDK Beta want to gain

feedback from developers about how to develop software that takes advantage of Kinect sensors in the

Windows environment. Please use the forums to provide feedback about your experimentation and

research when you use this SDK Beta.

Protecting Your Kinect Sensor While You Experiment

The following tips can help you protect your Kinect device while you experiment with possibilities by

using this SDK Beta.

Standalone Sensor

 Plug the Kinect sensor's power supply into an external power source.

With USB power only, the sensor is minimally functional and the LED lights up. However, to be fully

functional, the sensor must be connected to an external power source.

 No tools are required for calibration of audio and video.

Programming Guide – 10

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Controlling the Fan—Avoiding Overheating

 The Kinect sensor is protected from overheating by a fan. It is controlled by the sensor's firmware,

which turns off the camera at 90 degrees Celsius.

 There is no software interface for applications to control the fan.

Controlling the Sensors

 All control of the Kinect sensor is through the APIs that are provided in this SDK Beta.

Caution If you use any other mechanisms to control the Kinect sensor, the sensor could become

irreparably damaged.

 The tilt mechanism in the sensor array is not rated for frequent use. Your code should not make

calls to change the camera angle more than once per second or more than 15 times in any 20-

second period.

Warning You should tilt the Kinect sensor as few times as possible, to minimize wear on the

camera and to minimize tilting time. The camera motor is not designed for constant or repetitive

movement, and attempts to use it that way may cause degradation of motor function. This Beta

SDK limits the rate at which applications can tilt the sensor, to protect the Kinect hardware. If the

application tries to tilt the sensor too frequently, the runtime imposes a short lockout period during

which any further calls return an error code.

Sensor Placement

When using the Kinect sensor with a Windows PC, make sure to place the sensor on a stable surface, in

a location where it will not fall or be struck during use. In addition:

 Do not place the sensor on or in front of a speaker or a surface that vibrates or makes noise.

 Keep the sensor out of direct sunlight.

 Do not use the sensor near any heat sources.

 Use the sensor within its specified operating temperature range of 41 to 95 degrees Fahrenheit (5

to 35 degrees Celsius).

If the sensor is exposed to an environment outside its prescribed range, turn it off and allow the

temperature to stabilize within the specified range before you use the sensor again.

Caution Adjust the sensor location only by moving the base. Do not adjust the sensor viewing

angle by hand, by tilting the sensor on its base. After setup is complete, let the sensor motors

adjust the viewing angle, to avoid the risk of damaging your sensor.

Ranges for the Kinect Sensor Array

The current generation of the Kinect sensor is designed for game-playing and similar scenarios. While

you are experimenting with the Kinect sensor and NUI scenarios, remember the following:

 Standing Scenarios Only This SDK Beta enables skeletal viewing for standing scenarios only, not

seated figures.

 Range = 4 to 11 Feet For the depth and skeletal views, the figures should stand between 4 and

11 feet from the sensor.

Important If you stand too close to the sensor or experiment while the sensor is on your desktop, the

result is typically empty or noisy depth views or skeletal views.

Programming Guide – 11

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

The Kinect sensor ranges and the sensor array specifications are shown in the following tables.

Playable Ranges for the Kinect for Windows Sensor

Sensor item Playable range

Color and depth stream 4 to 11.5 feet (1.2 to 3.5 meters)

Skeletal tracking 4 to 11.5 feet (1.2 to 3.5 meters)

Kinect Sensor Array Specifications

Sensor item Specification range

Viewing angle 43° vertical by 57° horizontal field of view

Mechanized tilt range (vertical) ±28°

Frame rate (depth and color stream) 30 frames per second (FPS)

Resolution, depth stream QVGA (320 × 240)

Resolution, color stream VGA (640 × 480)

Audio format 16-kHz, 16-bit mono pulse code modulation (PCM)

Audio input characteristics A four-microphone array with 24-bit analog-to-digital converter

(ADC) and Kinect-resident signal processing such as echo

cancellation and noise suppression

Experimenting with this Beta Development Kit

To enable early exploration, this SDK Beta provides the following basics for developers:

 An easy-to-use programming interface that is supported by the Microsoft Kinect drivers and the

APIs in this SDK.

 APIs to control audio and video data streams and skeletal tracking in the Windows environment.

 Delivery of multiple media streams with minimal software latency across various video, CPU, and

device variables.

The Kinect sensor was designed specifically for use with Xbox 360 in living-room entertainment

applications. This SDK Beta opens up the potential to repurpose the Kinect sensor for use in PC

applications in other contexts, but this repurposing does not change the physical design and

capabilities of the sensor.

This SDK Beta is based on the Xbox 360 software, but this SDK Beta does not describe simply how to

port software from one computing environment to another. Numerous architectural, performance, and

behavioral differences exist between Xbox 360 and Windows. These differences affect how Windows

support has been implemented for Kinect technologies. As a result, design decisions and performance

characteristics are quite often very different between the two platforms. For example, the Kinect audio

solution on Windows is completely different from the solution for the Xbox 360 console. Support for the

four-microphone array Kinect audio support also requires an extension to the built-in Windows 7 audio

capabilities.

This section provides some technical information and recommended practices for working with preview

software such as this Beta SDK.

Programming Guide – 12

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Understanding How Kinect Sensors Work

The Microsoft Kinect sensor was developed and optimized to work with Xbox 360 consoles. The Kinect

hardware and firmware have not been redesigned to work on the Windows platform. Because the Kinect

sensor is a brand new, unsupported device in the Windows environment, consider the following:

 The multifunction devices that are exposed in the Kinect sensor are not standard USB devices.

Therefore:

 Comprehensive Windows Plug and Play capabilities are not available.

 Windows power management is not implemented.

As a result, your system might behave in unpredictable ways in sleep transitions or with surprise

device removal.

 Depth camera, multiple-microphone arrays, and other capabilities are unique to the Kinect sensor.

Some effects might seem counter-intuitive when you attempt to work with the data streams.

As you experiment with controlling Kinect inputs and outputs, consider reading more about the

unique capabilities of the Kinect sensor. For technical background information, see the research

papers in ―Resources,‖ later in this guide.

Beta Testing Recommended Practices

When you work with any beta software such as this SDK Beta, consider these tips:

 Control the factors that can influence your development work, so that you can focus on developing

and debugging your own application:

 Do not connect your Kinect device to a USB hub that is shared by other devices.

 Disconnect other USB media devices while you experiment with your Kinect application.

 Avoid running other beta software or drivers, which can interact with your SDK Beta testing in

unpredictable ways.

 This SDK Beta has not been tested in the following ways:

 Developing with other SDKs and frameworks, such as XNA Game Studio.

 Interoperating with productivity applications or other software that might attempt to use the

multimedia capabilities of the Kinect device, such as voice-over-IP (VOIP) applications that

depend on a microphone.

Samples in the SDK Beta
The Windows for Kinect SDK Beta includes several sample programs to help you experiment with the

Kinect sensor on Windows. The samples demonstrate basic NUI features and coding techniques, and are

provided to help you explore fundamental concepts for using this SDK Beta. These samples are installed

in your \Users\Public\Documents\Microsoft Research KinectSDK Samples\ folder.

Detailed ―walkthrough‖ documentation for several of these samples can be found on the SDK Beta

website, including:

SkeletalViewer Walkthrough—Capturing Data with the NUI API (C++ and C#)

Uses the NUI API to access and render data from the Kinect sensor’s depth and video cameras as

depth, video, and skeletal images on the screen. The managed SkeletalViewer sample uses

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/SkeletalViewer_Walkthrough.docx

Programming Guide – 13

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Windows Presentation Foundation (WPF) to render captured images, and the native application

uses DirectX and the Windows graphic display interface (GDI).

AudioCaptureRaw Walkthrough—Capturing the Raw Audio Stream (C++)

Uses the Windows Audio Session API (WASAPI) to capture the raw audio stream from the Kinect

sensor’s four-element microphone array and write it to a .wav file.

MFAudioFilter Walkthrough—Capturing Streams with a Media Foundation Audio Filter (C++)

Shows how to capture an audio stream from the Kinect sensor’s microphone array by using the

KinectAudio DirectX Media Object (DMO) in filter mode in a Windows Media
®

 Foundation

topology.

MicArrayEchoCancellation Walkthrough—Capturing Audio Streams with Acoustic Echo

Cancellation and Beamforming (C++)

Shows how to use the KinectAudio DMO as a DirectShow
®

 source to access the Kinect sensor’s

microphone array. This sample uses acoustic echo cancellation to record a high-quality audio

stream and beamforming and source localization to determine the selected beam and the direction

of the sound source.

RecordAudio Walkthrough—Recording an Audio Stream and Monitoring Direction (C#)

Demonstrates how to capture an audio stream from the Kinect sensor’s microphone array and how

to monitor the selected beam and the direction of the sound source.

Speech Walkthrough—Recognizing Voice Commands (C#)

Demonstrates how to use the Kinect sensor’s microphone array with Microsoft.Speech API to

recognize voice commands.

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/AudioCaptureRaw_Walkthrough.docx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/MFAudio_Walkthrough.docx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/MicArrayEchoCancellation_Walkthrough.docx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/RecordAudio_Walkthrough.docx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/Speech_Walkthrough.docx

Programming Guide – 14

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

PART 2—The NUI API: An Overview

Kinect for Windows Architecture
The Kinect for Windows SDK Beta provides a sophisticated software library and tools to help developers

use the rich form of Kinect-based natural input, sensing and reacting to real-world events.

The Kinect sensor and associated software library interact with your application, as shown in Figure 1.

Figure 1. Hardware and software interaction with an application

The components of the Kinect for Windows SDK Beta are shown in Figure 2.

Video Components Audio Components

Windows

components

1

2

3

5

4

Kernel-mode drivers for Kinect for Windows

DMO codec for mic array

Applications

Kinect for

Windows SDK

User-created

components

USB Hub

Windows Core Audio

and Speech APIs

Device

setup
Audio stream controlVideo stream control

WinUSB device stack USBAudio audio stackWinUSB camera stack

Motor Audio mic arrayCameras

NUI API
A/V capture and transcoding

Media Foundation | DirectShow

User Mode

Kernel Mode

Kinect sensor

Hardware

Device

access

Figure 2. Kinect for Windows SDK Beta architecture

Components for Kinect for Windows shown in Figure 2 include the following:

1. Kinect hardware

The hardware components, including the Kinect sensor and the USB hub, through which the sensor

is connected to the computer.

Programming Guide – 15

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

2. Microsoft Kinect drivers

The Windows 7 drivers for the Kinect sensor, which are installed as part of the SDK Beta setup

process as described in this document. The Microsoft Kinect drivers support:

 The Kinect sensor’s microphone array as a kernel-mode audio device that you can access

through the standard audio APIs in Windows.

 Streaming image and depth data.

 Device enumeration functions that enable an application to use more than one Kinect sensor

that is connected to the computer.

3. NUI API

A set of APIs that retrieves data from the image sensors and controls the Kinect devices.

4. KinectAudio DMO

The Kinect DMO that extends the microphone array support in Windows 7 to expose beamforming

and source localization functionality.

5. Windows 7 standard APIs

The audio, speech, and media APIs in Windows 7, as described in the Windows 7 SDK and the

Microsoft Speech SDK.

The NUI API
The NUI API is the core of the Kinect for Windows API. It supports fundamental image and device

management features, including the following:

 Access to the Kinect sensors that are connected to the computer.

 Access to image and depth data streams from the Kinect image sensors.

 Delivery of a processed version of image and depth data to support skeletal tracking.

Note This SDK Beta includes C++ and C# versions of the SkeletalViewer sample. SkeletalViewer shows

how to use the NUI API in an application to capture data streams from the NUI Image camera, use

skeletal images, and process sensor data. For more information, see ―Skeletal Viewer Walkthrough‖ on

the SDK Beta website.

NUI API Initialization

The Microsoft Kinect drivers support the use of multiple Kinect sensors on a single computer. The NUI

API includes functions that enumerate the sensors, so that you can determine how many sensors are

connected to the machine, get the name of a particular sensor, and individually open and set streaming

characteristics for each sensor.

Although the SDK Beta supports the use of multiple Kinect sensors by an application, only one

application can use each sensor at any given time.

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/SkeletalViewer_Walkthrough.docx

Programming Guide – 16

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Sensor Enumeration and Access

C++ and managed code applications enumerate the available Kinect sensors, open a sensor, and

initialize the NUI API in one of the following ways:

To initialize the NUI API and use a Kinect sensor in a C++ application

If the application uses only one Kinect sensor:

1. Call NuiInitialize. This function initializes the first instance of the Kinect sensor device on the

system.

2. Call other NuiXxx functions to stream image and skeleton data and manage the cameras.

3. Call NuiShutdown when use of the Kinect sensor is complete.

If the application uses more than one sensor:

1. Call MSR_NuiDeviceCount to determine how many sensors are available.

2. Call MSR_NuiCreateInstanceByIndex to create an instance for each sensor that the application

uses. This function returns an INuiInstance interface pointer for the instance.

3. Call INuiInstance::NuiInitialize to initialize the NUI API for the sensor.

4. Call other methods on the INuiInstance interface to stream image and skeleton data and manage

the cameras.

5. Call INuiInstance::NuiShutdown on a sensor instance to close the NUI API when use of that sensor

is complete.

6. Call MSR_NuiDestroyInstance to destroy the instance.

To initialize the NUI API and use a Kinect sensor in managed code

If the application uses only one Kinect sensor:

1. Create a new Runtime object and leave the parameter list empty, as in the following C# code:

nui = new Runtime();

This constructor creates an object that represents the first instance of the Kinect sensor device on

the system.

2. Call Runtime.Initialize to initialize the NUI API for the sensor.

3 Call additional methods in the managed interface to stream image and skeleton data and manage

the cameras.

4. Call Runtime.Shutdown when use of the Kinect sensor is complete.

If the application uses more than one sensor:

1. Call MSR_NuiDeviceCount to determine how many sensors are available.

2. Create a new Runtime object and pass the index of a sensor, as in the following C# code:

nui = new Runtime(index);

This constructor creates an object that represents a particular instance of the Kinect sensor device

on the system.

3. Call Runtime.Initialize to initialize the NUI API for that device instance.

Programming Guide – 17

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

4 Call additional methods in the managed interface to stream image and skeleton data and manage

the cameras.

5. Call Runtime.Shutdown when use of that device instance is complete.

Initialization Options

The NUI API processes data from the Kinect sensor through a multi-stage pipeline. At initialization, the

application specifies the subsystems that it uses, so that the runtime can start the required portions of

the pipeline. An application can choose one or more of the following options:

 Color. The application streams color image data from the sensor.

 Depth. The application streams depth image data from the sensor.

 Depth and player index. The application streams depth data from the sensor and requires the

player index that the skeleton tracking engine generates.

 Skeleton. The application uses skeleton position data.

These options determine the valid stream types and resolutions for the application. For example, if an

application does not indicate at NUI API initialization that it uses depth, it cannot later open a depth

stream.

NUI Image Data Streams: An Overview

The NUI API provides the means to modify settings for the Kinect sensor array, and it enables you to

access image data from the sensor array.

Stream data is delivered as a succession of still-image frames. At NUI initialization, the application

identifies the steams it plans to use. It then opens those streams with additional stream-specific details,

including stream resolution, image type, and the number of buffers that the runtime should use to store

incoming frames. If the runtime fills all the buffers before the application retrieves and releases a frame,

the runtime discards the oldest frame and reuses that buffer. As a result, it is possible for frames to be

dropped. An application can request up to four buffers; two is adequate for most usage scenarios.

An application has access to the following kinds of image data from the sensor array:

 Color data

 Depth data

 Player segmentation data

Color Image Data: Quality, Formats and Bandwidth

Color image data is available at two quality levels and in two different formats:

 Quality level determines how quickly data is transferred from the Kinect sensor array to the PC.

 The available color formats determine whether the image data that is returned to application code

is encoded as RGB or YUV.

Image Quality and Bandwidth The sensor array uses a USB connection to pass data to the PC, and

that connection provides a given amount of bandwidth. Your choice of image data quality lets you tune

how that bandwidth is used. High-quality images send more data per frame and update less frequently,

whereas regular quality images update more frequently with some loss in image quality due to

compression:

Programming Guide – 18

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

 At regular quality, the Bayer color image data that the sensor returns at 1280x1024 is compressed

and converted to RGB before transmission to the runtime. The runtime then decompresses the data

before it passes the data to your application. The use of compression makes it possible to return

color data at frame rates as high as 30 FPS, but the algorithm that is used leads to some loss of

image fidelity.

 At high quality, color image data is not compressed in the sensor—it is transmitted to the runtime

as originally captured by the sensor. Because the data is not compressed, more data must be

transmitted per frame and the maximum frame rate is no more than 15 FPS. Also, the

uncompressed data requires that the NUI system allocate larger buffers.

You must evaluate what kind of color data is most appropriate in your application: high-quality data in

larger buffers at lower frame rates or data at higher frame rates with some loss of fidelity and a smaller

memory footprint.

Formats Color data is available in the following two formats:

 RGB color provides 32-bit, linear X8R8G8B8-formatted color bitmaps, in sRGB color space. To work

with RGB data, an application should specify a color or color_YUV image type when it opens the

stream.

 YUV color provides 16-bit, gamma-corrected linear UYVY-formatted color bitmaps, where the

gamma correction in YUV space is equivalent to sRGB gamma in RGB space. Because the YUV

stream uses 16 bits per pixel, this format uses less memory to hold bitmap data and allocates less

buffer memory when you open the stream. To work with YUV data, your application should specify

the raw YUV image type when it opens the stream. YUV data is available only at the 640x480

resolution and only at 15 FPS.

Both color formats are computed from the same camera data, so that the YUV data and RGB data

represent the same image. Choose the data format that is most convenient given your application's

implementation.

Depth Data

The depth data stream provides frames in which the high 13 bits of each pixel give the distance, in

millimeters, to the nearest object at that particular x and y coordinate in the depth sensor's field of view.

The following depth data streams are available:

 Frame size of 640×480 pixels

 Frame size of 320×240 pixels

 Frame size of 80×60 pixels

Applications can process data from a depth stream to support various custom features, such as tracking

users' motions or identifying background objects to ignore during application play.

Player Segmentation Data

In the Kinect for Windows SDK Beta, the Kinect system processes sensor data to identify two human

figures in front of the sensor array and then creates the Player Segmentation map. This map is a bitmap

in which the pixel values correspond to the player index of the person in the field of view who is closest

to the camera, at that pixel position.

Although the player segmentation data is a separate logical stream, in practice the depth data and

player segmentation data are merged into a single frame:

Programming Guide – 19

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

 The 13 high-order bits of each pixel represent the distance from the depth sensor to the closest

object, in millimeters.

 The 3 low-order bits of each pixel represent the player index of the tracked player who is visible at

the pixel's x and y coordinates. These bits are treated as an integer value and are not used as flags

in a bit field.

A player index value of zero indicates that no player was found at that location. Values one and two

identify players.

Applications commonly use player segmentation data as a mask to isolate specific users or regions of

interest from the raw color and depth images.

Retrieving Image Information

Application code gets the latest frame of image data by calling a frame retrieval method and passing a

buffer. If the latest frame of data is ready, it is copied into the buffer. If your code requests frames of

data faster than new frames are available, you can choose whether to wait for the next frame or to

return immediately and try again later. The NUI Image Camera API never provides the same frame of

data more than once.

Applications can use either of the following two usage models:

 Polling Model The polling model is the simplest option for reading data frames.

First, the application code requests a frame and specifies how long to wait for the next frame of

data (between 0 and an infinite number of milliseconds). The request method returns when a new

frame of data is ready or when the wait time expires, whichever comes first. Specifying an infinite

wait causes the call for frame data to block and to wait as long as necessary for the next frame.

When the request returns successfully, the new frame is ready for processing. If the time-out value

is set to zero, the application code can poll for completion of a new frame while it performs other

work on the same thread.

A native C++ application calls NuiImageGetNextFrame to poll for color and depth frames.

Managed code calls ImageStream.GetNextFrame.

 Event Model The event model supports the ability to integrate retrieval of a skeleton frame into an

application engine with more flexibility and more accuracy.

In this model, C++ application code passes an event handle to NuiImageStreamOpen. When a

new frame of image data is ready, the event is signaled. Any waiting thread wakes and gets the

frame of skeleton data by calling NuiImageGetNextFrame. During this time, the event is reset by

the NUI Image Camera API.

Managed code uses the event model by hooking a Runtime.DepthFrameReady or

Runtime.ImageFrameReady event to an appropriate event handler. When a new frame of data is

ready, the event is signaled and the handler runs and calls ImageStream.GetNextFrame to get the

frame.

Programming Guide – 20

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

NUI Skeleton Tracking

The NUI Skeleton API provides information about the location of up to two players standing in front of

the Kinect sensor array, with detailed position and orientation information.

The data is provided to application code as a set of points, called skeleton positions, that compose a

skeleton, as shown in Figure 3. This skeleton represents a user’s current position and pose. Applications

that use skeleton data must indicate this at NUI initialization and must enable skeleton tracking.

Figure 3. Skeleton joint positions relative to the human body

Retrieving Skeleton Information

Application code gets the latest frame of skeleton data in the same way that it gets a frame of image

data: by calling a frame retrieval method and passing a buffer. Applications can use either a polling

model or an event model, in the same way as for image frames. An application must choose one model

or the other; it cannot use both models simultaneously.

To use the polling model:

 A native C++ application calls NuiSkeletonGetNextFrame to retrieve a skeleton frame.

 Managed code calls SkeletonEngine.GetNextFrame.

To use the event model:

 C++ application code passes an event handle to NuiSkeletonTrackingEnable.

When a new frame of skeleton data is ready, the event is signaled. Any waiting thread wakes and

gets the frame of skeleton data by calling NuiSkeletonGetNextFrame. During this time, the event

is reset by the NUI Skeleton API.

 Managed code uses the event model by hooking a Runtime.SkeletonFrameReady event to an

appropriate event handler.

Programming Guide – 21

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

When a new frame of skeleton data is ready, the event is signaled and the handler runs and calls

SkeletonEngine.GetNextFrame to get the frame.

The skeletal tracking engine processes depth frame data to calculate the normal to gravity and the floor

clipping plane, which are described in ―Sensor Array and Tilt Compensation,‖ later in this document. If

the application indicates at initialization that it uses skeleton tracking, the skeletal tracking engine

signals a skeleton frame each time it processes the depth data, whether or not a skeleton currently

appears in the frame. Applications that use the normal to gravity and floor clipping plane values can

retrieve the skeleton frame. The returned skeleton frame includes the timestamp of the corresponding

depth image so that applications can match skeleton data with depth image data.

Active and Passive Skeletal Tracking

The skeletal tracking engine provides full skeletal tracking for one or two players in the sensor's field of

view. When a player is actively tracked, calls to get the next skeleton frame return complete skeleton

data for the player. Passive tracking is provided automatically for up to four additional players in the

sensor's field of view. When a player is being tracked passively, the skeleton frame contains only limited

information about that player's position. By default, the first two skeletons that the skeletal tracking

system finds are actively tracked, as shown in Figure 4.

Figure 4. Active tracking for two players

The runtime returns skeleton data in a skeleton frame, which contains an array of skeleton data

structures, one for each skeleton that the skeletal tracking system recognized. Not every skeleton frame

contains skeleton data. When skeleton tracking is enabled, the runtime signals a skeleton event every

time it processes a depth frame, as described in the previous section.

For all returned skeletons, the following data is provided:

 The current tracking state of the associated skeleton.

 For skeletons that are passively tracked, this value indicates position-only tracking.

 For an actively tracked skeleton, the value indicates skeleton-tracked.

Programming Guide – 22

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

 A unique tracking ID that remains assigned to a single player as that player moves around the

screen.

The tracking ID is guaranteed to remain consistently applied to the same player for as long as he or

she remains in the field of view. A given tracking ID is guaranteed to remain at the same index in

the skeleton data array for as long as the tracking ID is in use. If the tracking ID of the skeleton at a

particular index in the array changes, one of two things has happened: Either the tracked player left

the field of view and tracking started on another player in the field of view, or the tracked player left

the field of view, then returned, and is now being tracked again.

 A position (of type Vector4) that indicates the center of mass for that player. This value is the only

available positional value for passive players.

 For the actively tracked players, returned data also includes the current full skeletal data.

 For the passively tracked players, returned data includes only basic positional and identification

data, and no skeletal data.

NUI Transformations

This section provides a brief overview of the various coordinate systems that are used with skeleton

tracking and the API support that is provided for transformations between these spaces.

Depth Image Space

Image frames of the depth map are 640x480, 320×240, or 80x60 pixels in size, with each pixel

representing the distance, in millimeters, to the nearest object at that particular x and y coordinate. A

pixel value of 0 indicates that the sensor did not find any objects within its range at that location. The x

and y coordinates of the image frame do not represent physical units in the room, but rather pixels on

the depth imaging sensor. The interpretation of the x and y coordinates depends on specifics of the

optics and imaging sensor. For discussion purposes, this projected space is referred to as the depth

image space.

Skeleton Space

Player skeleton positions are expressed in x, y, and z coordinates. Unlike the coordinate of depth image

space, these three coordinates are expressed in meters. The x, y, and z axes are the body axes of the

depth sensor. This is a right-handed coordinate system that places the sensor array at the origin point

with the positive z axis extending in the direction in which the sensor array points. The positive y axis

extends upward, and the positive x axis extends to the left (with respect to the sensor array), as shown in

Figure 5. For discussion purposes, this expression of coordinates is referred to as the skeleton space.

Programming Guide – 23

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Figure 5. Skeleton-space coordinate system for the sensor array

Sensor Array and Tilt Compensation

Placement of the sensor array affects the images that that the camera records. For example, the camera

might be placed on a surface that is not level or the sensor array might be vertically pivoted to optimize

the sensor's field of view. In these cases, the y-axis of the skeleton space is usually not perpendicular to

the floor or parallel with gravity. In the resulting images, people standing up straight could appear to be

leaning.

For these reasons, each skeleton frame contains a vector that describes the normal to gravity value. The

value is a measurement from an internal three-axis accelerometer that has been calibrated to align with

the image sensor. In the absence of motion, the accelerometer measures a 1-g normal force to gravity.

This can be treated as an upward vector.

The normal force to gravity can be found in the vNormalToGravity member of the

NUI_SKELETON_FRAME structure in the native interface and in the SkeletonFrame.NormalToGravity

field in the managed interface.

Floor Determination

Each skeleton frame also contains a floor clip plane vector, which contains the coefficients of an

estimated floor plane equation. The skeleton tracking system updates this estimate for each frame and

uses it as a clipping plane for removing the background and segmentation of players. The general plane

equation is:

Ax + By + Cz + D = 0

where:

A = vFloorClipPlane.x

B = vFloorClipPlane.y

C = vFloorClipPlane.z

D = vFloorClipPlane.w

Programming Guide – 24

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

The equation is normalized so that the physical interpretation of D is the height of the camera from the

floor, in meters. It is worth noting that the floor might not always be visible. In this case, the floor clip

plane is a zero vector.

The floor clip plane can be found in the vFloorClipPlane member of the NUI_SKELETON_FRAME

structure in the native interface and in the SkeletonFrame.FloorClipPlane field in the managed

interface.

Skeletal Mirroring

By default, the skeleton system always mirrors the user who is being tracked. For applications that use

an avatar to represent the user, such mirroring could be desirable if the avatar is shown facing into the

screen. However, if the avatar faces the user, mirroring would present the avatar as backwards.

Depending on its requirements, an application can create a transformation matrix to mirror the skeleton

and then apply the matrix to the points in the array that contains the skeleton positions for that

skeleton. The application is responsible for choosing the proper plane for reflection.

Programming Guide – 25

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

PART 3—The Audio API: An Overview

About the Kinect Microphone Array
Microsoft Kinect audio features are supported by a microphone array. In general, a microphone array

consists of a set of microphones—typically four—that are usually several centimeters apart and

arranged in a linear or L-shaped pattern. An array of multiple independent microphones has the

following significant advantages over a single microphone:

 Improved audio quality Microphone arrays can support more sophisticated and effective noise

suppression and automatic echo cancellation (AEC) algorithms than are possible with a single

microphone.

 Beamforming and source localization By using the fact that the sound from a particular audio

source arrives at each microphone in the array at a slightly different time, beamforming allows

applications to determine the direction of the audio source and use the microphone array as a

steerable directional microphone.

For a detailed discussion of microphone arrays and microphone array support in Windows, see the

white papers ―Microphone Array Support in Windows Vista‖ and ―How to Build and Use Microphone

Arrays for Windows Vista‖ on the MSDN website. For a general conceptual discussion, see the

―Beamforming‖ topic on Wikipedia.

The Kinect sensor includes a four-element linear microphone array, which uses 24-bit ADC and provides

local signal processing, including echo cancellation and noise suppression. Applications that are created

with this SDK Beta can use the Kinect microphone array for the following:

 High-quality audio capture

 Beamforming and source localization

The MSRKinectAudio DMO includes built-in algorithms that control the ―beam‖ and provide the

source direction to applications.

 Speech recognition

With this SDK Beta, applications can use the Kinect microphone array as an input device for the

Microsoft.Speech speech recognition API.

The Kinect for Windows SDK Beta provides both unmanaged and unmanaged APIs for audio capture

and control, as described in the following sections.

http://msdn.microsoft.com/en-us/windows/hardware/gg462985.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg462992.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg462992.aspx
http://en.wikipedia.org/wiki/Beamforming

Programming Guide – 26

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Kinect SDK C++ Audio API
Unmanaged applications can capture the Kinect sensor’s microphone array in several ways, as described

in the following sections.

Raw Audio Capture

Applications can use the Windows Audio Session API (WASAPI) to capture the raw audio stream from

the Kinect sensor’s microphones. For an example of how to capture a raw audio stream, see the

AudioCaptureRaw sample. For more information, see ―AudioCaptureRaw Walkthrough‖ on the SDK Beta

website.

KinectAudio DMO

Windows Vista
®

 and later versions include a voice-capture digital signal processor (DSP) that supports

microphone arrays. Developers typically access that DSP through a DMO, which is a standard COM

object that can be incorporated into a Microsoft DirectShow graph or a Microsoft Media Foundation

topology. The Kinect for Windows SDK Beta includes an extended version of the Windows microphone

array DMO—referred to here as the MSRKinectAudio DMO—to support the Kinect microphone array.

Although the internal details are different, the KinectAudio DMO supports the same interfaces as the

standard microphone array DMO and works in much the same way. However, the KinectAudio DMO:

 Has its own class identifier (CLSID), CLSID_CMSRKinectAudio.

 Supports an additional microphone mode, which is customized to support the Kinect microphone

array.

 Includes beamforming and source localization functionality, which it exposes through an additional

interface, ISoundSourceLocalizer.

The beamforming functionality supports 11 fixed beams, which range from ‒50 to +50 degrees in

10-degree increments. Applications can use the DMO’s adaptive beamforming option—which

automatically selects the optimal beam—or specify a particular beam. The DMO also includes a source

localization algorithm, which estimates the source direction.

This SDK Beta includes the following two samples that show how to use the KinectAudio DMO to

capture an audio stream from the Kinect sensor’s microphone array:

 MicArrayEchoCancellation shows how to capture sound and determine the selected beam and

source direction by using the DMO as a DirectShow source. For more information, see

―MicArrayEchoCancellation Walkthrough‖ on the SDK Beta website.

 MFAudioFilter shows how to capture sound by using the KinectAudio DMO as a filter object in a

Media Foundation topology. For more information, see ‖MFAudioFilter Walkthrough‖ on the SDK

Beta website.

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/AudioCaptureRaw_Walkthrough.docx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/MicArrayEchoCancellation_Walkthrough.docx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/MFAudio_Walkthrough.docx

Programming Guide – 27

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Kinect SDK Managed Audio API
Kinect for Windows SDK Beta includes a managed Audio API, which is basically a wrapper over the

KinectAudio DMO that supports the same functionality but is much simpler to use. The managed API

allows applications to configure the DMO and perform operations such as starting, capturing, and

stopping the audio stream. The managed API also includes events that provide the source and beam

directions to the application.

Important The managed Kinect Audio API runs the DMO on a background thread, which requires the

multithreaded apartment (MTA) threading model. Otherwise, the interop layer throws an exception.

If you use a programming model such as WPF that requires single-threaded apartment (STA) threading,

use a separate MTA thread for Kinect Audio.

The RecordAudio sample shows how to use the managed API to capture sound and monitor the

selected beam and source direction. For more information, see ―RecordAudio Walkthrough‖ on the SDK

Beta website.

How to Use Microsoft.Speech with the Kinect

Microphone Array
Speech recognition is a key aspect of natural user interface and is supported in Windows by the

Microsoft.Speech platform. The Kinect for Windows SDK provides the necessary infrastructure for

managed applications to use the Kinect microphone with the Microsoft.Speech API, which supports the

latest acoustical algorithms. This SDK Beta includes a custom acoustical model that is optimized for the

Kinect sensor’s microphone array.

Note MSDN provides limited documentation for the Microsoft.Speech API. You should instead use the

HTML Help file (CHM) that is included with the Speech SDK, which can be found at

Program Files\Microsoft Speech Platform SDK\Docs.

To use Microsoft.Speech with the Kinect sensor, you must install the following components:

 Microsoft Speech Platform - Software Development Kit, version 10.2 (x86 edition)

 Kinect for Windows Runtime Language Pack, version 0.9

(acoustic model from Microsoft Speech Platform for the Kinect for Windows SDK Beta)

 Microsoft Speech Platform - Server Runtime, version 10.2 (x86 edition)

The Kinect for Windows SDK Beta runtime is x86-only, so you must download the x86 version of the

speech runtime for x86 or x64 systems.

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/RecordAudio_Walkthrough.docx
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1b1604d3-4f66-4241-9a21-90a294a5c9a4&displaylang=en
http://go.microsoft.com/fwlink/?LinkId=220942
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=bb0f72cb-b86b-46d1-bf06-665895a313c7

Programming Guide – 28

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

PART 4—Resources

Tips and Troubleshooting

Troubleshooting Tips for Driver Installation

1. Make sure your Kinect device is plugged into an external power source, not just your PC.

2. If all elements of the composite devices do not appear in Device Manager:

 Unplug the Kinect sensor, and reconnect it.

 Make sure that the sensor is connected to a functioning USB port—for example, connect

another USB device such as a mouse that you’ve already used on your computer.

 Make sure that the sensor does not share the USB hub with any other devices.

 Make sure to uninstall any previous driver, even if it’s a driver installed with the Kinect for

Windows SDK Beta. To do this:

 Unplug the Kinect sensor.

 Follow the instructions from the driver’s manufacturer or select it in Programs and

Features in Control Panel and click Uninstall. Also, check your system’s registry to ensure

than any previous driver has been removed, other than one provided with the SDK Beta.

 Uninstall previous versions of this SDK Beta driver in Programs and Features in Control

Panel. Then reinstall it from the original SDK Beta download package.

 Plug in the Kinect sensor again.

General Kinect Device Troubleshooting

For issues that might be related to the Kinect sensor setup and sensors, see these Kinect topics on the

Xbox Support web site:

 Kinect Setup—positioning the sensor and setting up the play space.

 More Topics—cleaning the sensor, mounting, and replacement parts.

Detecting the Absence of a Kinect Sensor

If no Kinect sensor is connected to the PC when the application tries to initialize image or audio capture:

 NuiInitialize returns HRESULT error 0x80080014.

 Microsoft.Research.Kinect.Nui.Runtime.Initialize throws a System.InvalidOperationException.

 The Microsoft.Research.Kinect.Audio.KinectAudioSource constructor throws a

System.InvalidOperationException.

Audio

 When running the MicArrayEchoCancellation sample, you should be streaming data before you

start the capture loop—for example, playing a music file on Windows Media Player.

DirectX Runtime Errors in Samples

 Make sure that the driver for your PC graphics card is up to date and is installed properly.

 Make sure that you have Version 9.0c or later of the DirectX runtime.

http://support.xbox.com/en-us/pages/kinect/getting-started/default.aspx#WalkthroughStep5
http://support.xbox.com/en-us/pages/kinect/more-topics/default.aspx
http://www.microsoft.com/downloads/en/details.aspx?familyid=2DA43D38-DB71-4C1B-BC6A-9B6652CD92A3&displaylang=en

Programming Guide – 29

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Troubleshooting Blue Screens and Deadlocking

 Make sure that webcams and other high-bandwidth USB devices connected to a different USB bus

than the Kinect sensor.

 Make sure your Kinect device is connected to your PC when you launch a debugging session.

 If you unplug the Kinect sensor while streaming is underway or if some other unexpected error

occurs during streaming, all subsequent NuiXxx calls except NuiShutdown fail and return the error

code of the streaming error. The application must call NuiShutdown and then NuiInitialize—or

the managed interface equivalents—before it can use the sensor again.

More SDK Beta Troubleshooting Tips

For additional notes, see these resources on the SDK Beta website:

 Readme for Kinect for Windows SDK Beta

 FAQ for Kinect for Windows SDK Beta

Terminology for Kinect and NUI
This section contains terminology used in Kinect for the Windows SDK Beta from Microsoft Research.

beamforming algorithm

An algorithm that determines the direction of the sound source in the horizontal plane.

CDRP

Color, depth, and pixel registration.

depth stream

The data that is produced by the depth image camera in the Kinect sensor. Each frame in the

stream contains the distance, in millimeters, to the nearest object at a particular x and y coordinate

in the depth sensor's field of view. Two depth data streams are available, one with a frame size of

320×240 pixels and another with a frame size of 80×60 pixels.

Kinect sensor

A physical device that contains cameras and a microphone array. The sensor connects to a PC by a

USB cable, although Windows Plug and Play does not identify it as a USB device.

latency

The required time for isochronous data to travel from the USB isochronous device to the client

application. Many factors can affect latency, such as the video frame format (uncompressed,

compressed, and so on), the size of the video frame, the data rate, and the CPU speed.

natural user interface (NUI)

An evolving model for human-computer interaction that is context-appropriate and adaptive.

Because the NUI exploits a user’s existing skills and expectations, it is easy to learn. A NUI might

incorporate speech, gesture, touch, or location, depending upon the application and the user’s

environment.

USB isochronous interface

An interface that supports four USB data flow types: isochronous, control, interrupt, and bulk. The

Kinect sensor has an isochronous interface, which is typically used for audio, video, and other

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/readme.htm
http://research.microsoft.com/kinectsdk

Programming Guide – 30

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

streaming data from cameras and similar devices. The interface provides constant bandwidth that is

reserved exclusively for a particular device.

YUV stream

A stream that contains digital video data in which the three components are Y’ (luma, which

represents brightness) and two chroma values (Cb and Cr), which measure color difference. Because

the human eye is more sensitive to differences in brightness than in hue, the chroma values are

sampled at half the rate of the luma values, so a YUV stream contains two Y’ values for each Cb and

Cr. Consequently, at 8 bits per pixel, YUV data is more compressed than RGB data because only

4 bytes are needed for each two pixels. YUV color provides 16-bit, gamma-corrected linear UYVY-

formatted color bitmaps. For more information, see About YUV Video in the MSDN

library.

References
This section provides links to additional information about the Kinect for Windows SDK Beta from

Microsoft Research and related topics. See also FAQ for Kinect for Windows SDK Beta.

Microphone Arrays in Windows

About WASAPI (Windows Audio Session API)

Beamforming

How to Build and Use Microphone Arrays for Windows Vista

Microphone Array Support in Windows Vista

NUI and Kinect

―CES 2010: NUI with Bill Buxton‖ on Channel 9

Real-Time Human Pose Recognition in Parts from a Single Depth Image

SDKs and Tools from Microsoft

DirectX SDK – June 2010 version

Kinect for Windows Runtime Language Pack, version 0.9

(acoustic model from Microsoft Speech Platform for the Kinect for Windows SDK Beta)

Microsoft .NET Framework 4.0

Microsoft Speech Platform - Server Runtime, version 10.2 (x86 edition)

Microsoft Speech Platform - Software Development Kit, version 10.2 (x86 edition)

Microsoft Visual C++ 2010 Express

Microsoft Visual C# 2010 Express

Microsoft Visual Studio 2010 Professional—trial edition

http://msdn.microsoft.com/en-us/library/bb530104(VS.85).aspx
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/faq.aspx
http://msdn.microsoft.com/en-us/library/dd371455(VS.85).aspx
http://en.wikipedia.org/wiki/Beamforming
http://msdn.microsoft.com/en-us/windows/hardware/gg462992.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg462985.aspx
http://channel9.msdn.com/blogs/larrylarsen/ces-2010-nui-with-bill-buxton
http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://msdn.microsoft.com/en-us/directx/default.aspx
http://go.microsoft.com/fwlink?LinkId=220942
http://msdn.microsoft.com/en-us/netframework/aa569263
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=bb0f72cb-b86b-46d1-bf06-665895a313c7
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1b1604d3-4f66-4241-9a21-90a294a5c9a4&displaylang=en
http://www.microsoft.com/express/Downloads/#2010-Visual-CPP
http://www.microsoft.com/express/Downloads/#2010-Visual-CS
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/professional

Programming Guide – 31

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

APPENDIX

How to Build an Application with Visual Studio Express
To work with the samples in the Kinect for Windows SDK Beta and to develop your own applications

with this SDK Beta, you can use Visual Studio C++ 2010 Express or any other version of Visual Studio

2010. Visual Studio C++ Express is available at no cost.

To install Visual Studio 2010 Express

1. From the following web page, install Visual Studio 2010 Express for either C++ or C#:

http://www.microsoft.com/express/downloads/

2. After the installation completes, check for updates on Windows Update. Install any relevant updates

and reboot your computer if you are prompted to do so.

Tip It’s a good idea to keep all the software on your computer up to date.

3. The first time you start Visual Studio Express, the program prompts you for a registration code.

To acquire the code, follow the instructions on the screen or see the following website:

http://www.microsoft.com/express/support/regins/

You need a Windows Live ID to register. If you use Messenger, Hotmail, or Xbox Live, you already

have a Windows Live ID. If not, you can sign up at https://signup.live.com/signup.aspx?lic=1

Getting Started with Visual Studio Express

Use the following links to review introductory information on MSDN:

 Visual C++ Express Edition:

Getting Started with Visual C++ Express Edition

Getting Started with C++ and Visual C++ Express Edition

For help with common Visual C++ tasks, see ―How Do I?‖ Videos in the Visual C++ Developer

Center.

 Visual C# Express Edition:

Getting Started with Visual C#

Using the Visual C# Development Environment

For help with common Visual C# tasks, see ―How Do I?‖ Videos in the Visual C# Developer Center.

http://www.microsoft.com/express/downloads/
http://www.microsoft.com/express/support/regins/
https://signup.live.com/signup.aspx?lic=1
http://msdn.microsoft.com/en-us/visualc/ee340952.aspx
http://social.msdn.microsoft.com/Forums/en-US/Vsexpressvc/thread/ab83b4fa-a6d5-48eb-b45f-a3b23718b2c9
http://msdn.microsoft.com/en-us/visualc/bb496952.aspx#gettingstarted
http://msdn.microsoft.com/library/a72418yk(VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173063.aspx
http://msdn.microsoft.com/en-us/vcsharp/bb798022.aspx
http://social.msdn.microsoft.com/Forums/en-US/Vsexpressvc/thread/ab83b4fa-a6d5-48eb-b45f-a3b23718b2c9?outputAs=rss

Programming Guide – 32

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Configuring the Development Environment

Visual Studio Express Edition for either C++ or C# includes an integrated development environment

(IDE) in which you can code, debug, and test your applications. If you install Visual Studio Express in the

default location and accept its defaults for project files, the default locations for source, header, and

library files will also be correct. However, in some cases you might need to add folders to the defaults.

To change default file locations

1. Start your version of Microsoft Visual Studio Express from the Start menu.

2. Click File, click Open, and then click Project/Solution. Navigate to the folder that contains the

solution file for the sample or application.

3. If the Project menu is not visible, press F7 to try to build the solution. When you build the solution,

Visual Studio Express displays the Project menu.

3. On the Project menu, click Properties.

4. In the left column of the property page, click Configuration Properties and then

VC++ Directories (or VC# Directories, depending on your installation) to see a list of the locations

that the development environment searches for files.

5. Click the item to change, and then click the drop-down arrow on the far right to edit the locations.

Programming Guide – 33

Getting Started with the Kinect for Windows SDK Beta from Microsoft Research

Beta 1 Draft Version 1.0 – June 16, 2011

Creating Projects in Visual Studio

In Visual Studio, you organize development work into projects and solutions.

To create your first project in Visual Studio

1. Follow the steps for How to: Create Solutions and Projects on MSDN.

2. To add files to your project, follow the steps in How to: Add and Remove Solution Items on MSDN.

Note The walkthroughs for the Kinect for Windows SDK Beta describe the steps to use full Visual

Studio, rather than Visual Studio Express. The development environments are similar, but some menus

are organized differently because full Visual Studio provides more extensive capabilities. In particular,

Visual Studio Express does not have a Build menu. You can find the Build Solution command on the

Debug menu.

To build and test your project

1. Follow the steps outlined in Building in Visual Studio on MSDN.

See also Walkthrough: Building a Project (C++).

2. To start using the debugger, see Building and Debugging on MSDN.

See also Walkthrough: Testing a Project (C++).

http://msdn.microsoft.com/en-us/library/zfzh36t7.aspx
http://msdn.microsoft.com/en-us/library/1ee8zw5t.aspx
http://msdn.microsoft.com/en-us/library/cyz1h6zd.aspx
http://msdn.microsoft.com/library/bb384846.aspx
http://msdn.microsoft.com/en-us/library/d8k88a0k.aspx
http://msdn.microsoft.com/library/bb384841.aspx

